Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570485

RESUMO

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Assuntos
Ecossistema , Água do Mar , Animais , Água do Mar/química , Invertebrados/fisiologia , Mudança Climática , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Aquecimento Global
2.
Mar Pollut Bull ; 198: 115750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043205

RESUMO

A bottleneck in restoring self-sustaining beds of the European oyster (Ostrea edulis) is the successful development and settlement of larvae to bottom habitats. These processes are largely governed by temperature but a mechanistic understanding of larval performance across ecologically relevant temperatures is lacking. We reared larvae at low (20-21 °C) and high (20-24 °C) fluctuating temperatures and applied short-term exposures of larvae to temperatures between 16 and 33 °C to assess vital rates and thermal coping ranges. Larval thermal preference was between 25 and 30 °C for both rearing treatments which corresponded with optimum temperatures for oxygen consumption rates and locomotion. Larvae had 5.5-fold higher settling success, however, when reared at the high compared to the low fluctuating temperatures. Higher mean and periods of increased temperature, as projected in a future climate, may therefore enhance recruitment success of O. edulis in northern European habitats.


Assuntos
Ecossistema , Ostrea , Animais , Larva , Temperatura , Temperatura Baixa
3.
Sci Total Environ ; 856(Pt 2): 159284, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209875

RESUMO

To predict the potential impacts of climate change on marine organisms, it is critical to understand how multiple stressors constrain the physiology and distribution of species. We evaluated the effects of seasonal changes in seawater temperature and near-future ocean acidification (OA) on organismal and sub-organismal traits associated with the thermal performance of Eleginops maclovinus, a sub-Antarctic notothenioid species with economic importance to sport and artisanal fisheries in southern South America. Juveniles were exposed to mean winter and summer sea surface temperatures (4 and 10 °C) at present-day and near-future pCO2 levels (~500 and 1800 µatm). After a month, the Critical Thermal maximum and minimum (CTmax, CTmin) of fish were measured using the Critical Thermal Methodology and the aerobic scope of fish was measured based on the difference between their maximal and standard rates determined from intermittent flow respirometry. Lipid peroxidation and the antioxidant capacity were also quantified to estimate the oxidative damage potentially caused to gill and liver tissue. Although CTmax and CTmin were higher in individuals acclimated to summer versus winter temperatures, the increase in CTmax was minimal in juveniles exposed to the near-future compared to present-day pCO2 levels (there was a significant interaction between temperature and pCO2 on CTmax). The reduction in the thermal tolerance range under summer temperatures and near-future OA conditions was associated with a reduction in the aerobic scope observed at the elevated pCO2 level. Moreover, an oxidative stress condition was detected in the gill and liver tissues. Thus, chronic exposure to OA and the current summer temperatures pose limits to the thermal performance of juvenile E. maclovinus at the organismal and sub-organismal levels, making this species vulnerable to projected climate-driven warming.


Assuntos
Peixes , Água do Mar , Animais , Temperatura , Concentração de Íons de Hidrogênio , Estações do Ano , Oceanos e Mares
4.
J Fish Biol ; 101(6): 1428-1440, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065986

RESUMO

In marine fishes, the timing of spawning determines the environment offspring will face and, therefore, the chances of early life stage survival. Different waves of Atlantic herring Clupea harengus spawn throughout spring in the western Baltic Sea, and the survival of offspring from early in the season has been low in the most recent decade. The authors assessed changes in egg traits from early, middle and late phases of the spawning season to examine whether seasonal and/or maternal effects influenced embryo survival. At each phase, fertilized eggs of six to eight females were incubated at two temperatures (7 and 13°C), and egg size, fertilization success, mortality and time to hatch were recorded. A compilation of data from 2017 to 2020 spawning seasons indicated that mean total length of females decreased with progression of the season and increasing in situ water temperature. For the sub-set of females used in the laboratory study, early spawners were 7.6% larger and produced 14.2% larger eggs than late-spring spawners. Fertilization success was consistently high (>90%), and mortality to hatch was low (<3%). Neither the former nor latter were influenced by season, but both were influenced by maternity. This significant female effect was, however, not related to any maternal trait measured here (total length, Fulton's condition factor or age). There was no maternal effect on development rate at 7 or 13°C. The results suggest that intrinsic differences among females or among spawning waves are unlikely to markedly contribute to the poor survival observed for progeny from early in the season in this population and point towards other extrinsic factors or processes acting on eggs or early larval stages (e.g., seasonal match-mismatch dynamics with prey) as more likely causes of mortality.


Assuntos
Peixes , Gravidez , Feminino , Animais , Estações do Ano , Larva , Temperatura , Países Bálticos
5.
Sci Total Environ ; 719: 137239, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126405

RESUMO

We evaluated the effects of projected, near future ocean acidification (OA) and extreme events of temperature (warming or cooling) on the thermal tolerance of Concholepas concholepas, a coastal benthic keystone species. Three separate trials of an experiment were conducted by exposing juvenile C. concholepas for 1 month to one of two contrasting pCO2 levels (~500 and ~1200 µatm). In addition, each pCO2 level was combined with one of four temperature treatments. The control was 15 °C, whilst the other temperatures were 10 °C (Trial 1), 20 °C (Trial 2) and 25 °C (Trial 3). At the end of each trial, we assessed Critical Thermal maximum (CTmax) and minimum (CTmin) via self-righting success, calculated partial thermal tolerance polygons, measured somatic growth, determined transcription of Heat Shock Proteins 70 (HSP70) and measured oxygen consumption rates. Regardless of pCO2 level, HSP70 transcript levels were significantly higher in juveniles after exposure to extreme temperatures (10 °C and 25 °C) indicating physiological stress. Oxygen consumption rates increased with increasing temperature from 10 °C to 20 °C though showed a decrease at 25 °C. This rate was not affected by pCO2 or the interaction between temperature and pCO2. Juveniles exposed to present-day and near future pCO2 levels at 20 °C showed similar thermal tolerance polygonal areas; whilst changes in both CTmin and CTmax at 25 °C and 10 °C caused narrower and broader areas, respectively. Temperature affected growth, oxygen consumption and HSP70 transcription in small juvenile C. concholepas. Exposure to elevated pCO2 did not affect thermal tolerance, growth or oxygen consumption at temperatures within the thermal range normally experienced by this species in northern Chile (15-20 °C). At elevated pCO2 conditions, however, exposure to warmer (25 °C) or colder (10 °C) temperatures reduced or increased the thermal area, respectively. This study demonstrates the importance of examining the thermal-tolerance edges to better understand how OA and temperature will combine to physiologically challenge inter-tidal organisms.


Assuntos
Gastrópodes , Animais , Dióxido de Carbono , Chile , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
6.
Cell Stress Chaperones ; 16(6): 621-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21671159

RESUMO

Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.


Assuntos
Antioxidantes/metabolismo , Gastrópodes/metabolismo , Resposta ao Choque Térmico , Ar , Animais , Catalase/metabolismo , Chile , Clima , Gastrópodes/anatomia & histologia , Gastrópodes/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Estresse Oxidativo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA